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Rationale.
● The Cray architecture was designed in the first half of the 1970s 

and therefore predates GCC by at least a decade.
● Although it didn’t “predate” the C language, strictly speaking, it 

wasn’t made to run C programs easily (as I will show shortly).
● In fact, its main purpose was to run nuclear bomb simulations and 

weather forecasting models, both written in Fortran.
● So – how well can GCC work on this architecture ?
● Don’t try this at home unless you have a permit to use a Freon-

cooled device (and have 3-phase, 208 V, 400 Hz, 150 kW power).
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Cray architecture – outline (I).
● The Cray architecture is a typical (some would say: archetypical) 

RISC load/store design.
● Register-to-register operations have three operands.
● Addresses point to 64-bit words in memory. (Note: this talk 

assumes #define BITS_PER_UNIT 64 will suffice).
● It has eight computational registers (S, 64 bits), which contain 

either an integer or a floating point number ...
● … and eight address registers (A, 24 bits).
● Both register sets have a 64-member “shadow” register file (S ↔ T 

and A ↔ B).
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Cray architecture – outline (II).
● In addition, there are eight 64-element 64-bit vector registers (V).
● Both S and A registers are loaded from and stored to memory 

using the address contained in an A register plus a 20-bit offset 
(using A0 means using only the 20-bit offset).

● Cray does not have a floating point division instruction – you have 
to use a floating point reciprocal instruction followed by a 
multiplication and a two step Newton approximation described in 
the manual.

● Needless to say Cray floating point arithmetic doesn’t follow the 
IEEE-754 standard because it preceded it by a decade.
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Challenges (prelude).

● In the autumn of 1990 one of my previous employers bought a 4 
processor Cray Y-MP, running the UNICOS operating system.

● Because it was acquired to be the national academic 
supercomputer, it had to function well within the Dutch academic 
internet (IPv4) at that time.

● It turned out rather quickly that I would need ‘traceroute’ for that 
purpose – which unfortunately didn’t come with the machine.

● As you might imagine, porting a thoroughly 32-bit code to a 
machine that has only 64-bit arithmetic was a challenge.
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Challenges (I).
● So, for fun - I tried to figure out what the C compiler did with:

void copy (char *s, char *d)
{
    while (*d++ = *s++)
         ;
}

It turned out that character pointers were implemented by stuffing a word address and 
an (either byte or bit – can’t recall) offset into a 64-bit computational register. 
Character arrays were being stored 8 characters to a word in both memory and 
registers.

Needless to say, that made the loop body rather “interesting” – I counted 80 (eighty) 
instructions in total. Can GCC do something similar (stuff two “parts” of the character 
address into a struct) ? Or do we have to store one character per word ? Is this 
something SLP can help with ?
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Challenges (II).

● Earlier, I pointed out that both the eight S registers as well as the 
eight A registers have a 64-member “shadow” register file.

● Of course, it would be nice if register allocation could be 
“encouraged” to use those registers (“T” and “B”) as targets for 
spilling in preference of using the stack.

● In this context it might be useful to mention that blocks of T or B 
registers can be transferred to or from memory.

● Does LRA have a mechanism for such a “preferred spilling 
destination” ?
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Challenges (III).

● Special care has to be taken for branching.
● One would think that on a 64-bit word addressable machine, 

branching would be to a word boundary.
● However, instructions can be 1 or 2 parcels (of 16 bits) “wide”, so 

branching is to a parcel within a word (its offset is encoded in the 
lower two bits of the branch operand that has the “address”).

● Obviously, all hell breaks lose if you branch into the “middle” of a 
2-parcel instruction.
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Concluding remarks.
● I haven’t yet looked at the vectorization challenges, but they might 

be minimal.
● The vector registers are large in comparison to what is used on 

other architectures (64 elements) – but I don’t think that should 
pose a problem.

● Cray has both a vector length and a vector mask register.
● For those who want to look further into this are advised to visit the 

Cray architecture manual
● I plan to do this on a personal branch (if that’s visible to all).

http://bitsavers.trailing-edge.com/pdf/cray/CRAY-1/2240004C_CRAY-1_Hardware_Reference_Nov77.pdf
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Post Scriptum I: Size Matters.

● Kernighan and Ritchie made it quite clear in their “white book” 
paragraph on “Data type and sizes”, that

● “[An] int is an integer, typically reflecting the natural size of 
integers on the host machine.”

● For the Cray architecture, that would mean an int (and hence 
SImode) would have to be defined as a 64 bit entity.

● Hans-Peter Nilsson expressed to me that he highly doubted that 
would work in GCC, as there are no instances of machine 
descriptions with SImode being larger than 32 bits.
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Post Scriptum II: Addressing subword entities (a).

● On the Cray architecture, addresses (as expressed via the A 
registers) refer to the location of 64-bit words.

● So a challenge is to address subword entities. Vladimir Makarov 
suggested the following to me:

● A solution would be to let Pmode address bits, and add specific 
define_expand sequences to store or extract subword entities 
“inside” a 64-bit word.

● This could be done both for memory words, as well as inserting or 
extracting subwords from (S) registers.
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Post Scriptum II: Addressing subword entities (b). 

● However, there is a snag, as Richard Earnshaw pointed out to 
me: Modern C Standards assume (paragraph 3.14 in the 2017 
Standard):

● “Two threads of execution can update and access separate 
memory locations without interfering with each other.”

● It is abundantly clear from the examples given that that means 
“two consecutive char elements in a struct”, which of course is not 
going to work on a machine where the unit of memory 
access/update is a 64-bit word.
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Post Scriptum III: Using T and B registers.

● Ideally, S registers would have to be spilled to T registers and A 
registers to B registers, as that would prevent storing them in 
memory (on the stack).

● According to Vladimir Makarov (author of the LRA register 
allocator), this should be possible if the T and B registers could be 
relegated to separate register classes that are not connected to 
computational instructions.

● It would, however, still need some extension to the register 
allocator’s algorithms.
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