
Front End Based Optimization: Premature or Inevitable?

Toon Moene
The GNU Fortran Team

toon@moene.indiv.nluug.nl

Abstract

The process of optimization in a compiler is
finding a shorter and/or faster sequence of in-
structions that computes the same results as
the "obvious" sequence. Traditionally, opti-
mizations are performed after the source pro-
gram has been fully converted to an intermedi-
ate language that is independent of the source
language. This paper presents cases where
source language knowledge is important for
large gains in Fortran optimization. It also dis-
cusses further criteria for front-end optimiza-
tions.

No specific prior knowledge (outside general
knowledge of the GNU Compiler Collection
structure) is needed to understand this paper -
all relevant Fortran (and Fortran front end) con-
cepts will be explained.

1 Introduction

Classical compiler theory [1], Figure 1.2, as-
sumes that a compiler will first transform a pro-
gram from its source language (e.g., Fortran) to
some intermediate language before code opti-
mization takes place.

In this paper it is argued that - at least for For-
tran, but probably also for other High Level

Languages - it is useful to perform optimiza-
tions on the internal structures of the Front
End (i.e., the part of the compiler that "knows"
about the programming language the source is
written in).

For GNU Fortran, the Front End consists of the
files in the gcc/fortran directory.

2 The Tasks of the Front End

The Fortran Front End has to perform the fol-
lowing tasks:

1. Parse the characters of the source file into
something manageable on the basis of the
syntaxis of the language. The result is
stored into structures held inside the Front
End.

2. Gather the references to all the names
used in the various scopes of the scanned
source, and make them point to the right
objects.

3. Convert array(-section) expressions to
loops breaking them down to scalar ex-
pressions (a process known as scalariza-
tion).

4. Convert the resulting structures (front-end
trees) into the intermediate language of
the middle end - the language-independent
part of the compiler.

1

Items 1 and 2 were provided by Andy Vaught,
items 3 and 4 were written by Paul Brook with
assistance from Steven Bosscher.

Optimizations by the Front End are useful after
items 1 and 2 have been processed, because the
former are largely of a "convert text to internal
representation" type. It follows that Front End
optimizations are useful when scalarization oc-
curs (because then actual code transformation
takes place) - this will be borne out in the next
paragraphs.

3 Terminology and Notation

In Fortran

1. An array is a set of scalar data whose el-
ements are arranged in a rectangular pat-
tern.

2. The rank of an array is the number of di-
mensions.

3. The extent along a dimension is the num-
ber of elements along that dimension.

4. The shape of an array is an integer rank 1
array with as elements the extents of the
dimensions.

5. The size of an array is the total number of
elements of the array.

In array expressions and assignments all arrays
have the same shape.

Furthermore, in assignments it is guaranteed
that the right hand side is evaluated fully before
the left hand side is affected.

Array assignments and expressions take the
same form as scalar ones. E.g., the following

assigns the sum of array B and C to A (each ele-
ment of A will be the sum of the corresponding
elements of B and C):

A = B+C

Parts of arrays are indicated by a "colon" nota-
tion (called an array section), as follows:

A(f irst : last : step)

indicates the elements of A from f irst to last
taking every step’th value (all three of them can
be omitted - they then revert to their default val-
ues: f irst = lower bound, last = upper bound of
array, and step = 1).

Compilers use descriptors to describe rank,
shape and other relevant properties of arrays
and array sections.

Arrays of rank 1 and 2 are the most common -
they are the representation of vectors and matri-
ces that are the subject of the branch of math-
ematics known as Linear Algebra (see for in-
stance the book by the same name [3]).

Of course, the constituent mathematical enti-
ties in Linear Algebra are elements of a field,
which the floating point numbers and their ad-
dition and multiplication operations are not.

However, Fortran considers "an approximation
to the outcome of operation X" (where opera-
tion X is the mathematical "equivalent" of the
floating point operation) good enough.

4 Existing Fortran Front End Opti-
mizations

4.1 Reduction Operators on Array Expres-
sions

Several array reduction operators are defined in
the Fortran language:

2

1. SUM - determine the sum of the elements
of the array given as argument.

2. PRODUCT - determine the product of the
elements of the array given as argument.

3. ANY - determine the inclusive OR of the
(logical) elements of the array given as ar-
gument.

4. ALL - determine the AND of the (logical)
elements of the array given as argument.

5. MAXLOC - determine the location of the
maximal element of the array given as ar-
gument.

6. MINLOC - determine the location of the
minimal element of the array given as ar-
gument.

7. MAXVAL - determine the value of the max-
imal element of the array given as argu-
ment.

8. MINVAL - determine the value of the min-
imal element of the array given as argu-
ment.

A reduction operator is one that returns an array
with rank smaller than the one of its input.

For instance, assuming that array A(N,M)
contains floating point values, the expression
SUM(A) returns the sum of all elements of A,
a single number out of N ∗M numbers.

Interesting optimizations can be obtained by
recognizing that a single number (or logical, in
case of ANY and ALL) is obtained, regardless
of the number of (logical, floating point) enti-
ties that went into the computation.

E.g., the following is regular Fortran idiom:

SUBROUTINE AAP(A, B, N, M)
REAL A(N, M), B(N, M)
IF (ALL(A == B)) THEN
PRINT*,’AAP: A equals B!’
ELSE
... do some real work ...
ENDIF
END

The obvious (and expensive) code to generate
would be to first evaluate A == B in a tempo-
rary array of extents N ∗M, and then compute
the total AND of the resulting N ∗M logical ar-
ray.

GNU Fortran evaluates the complete ALL ex-
pression at once, along the following lines (the
’&’s as last and first character "glue" together
two subsequent source lines):

...
RESULT = .TRUE.
DO I = 1, M
DO J = 1, N
RESULT = RESULT .AND. &
& A(J,I) == B(J,I)
ENDDO
ENDDO
...

The reduction operators ANY and ALL were al-
ready treated this way originally.

4.2 Inlining of DOT_PRODUCT

DOT_PRODUCT is a reduction operator imple-
menting SUM(A*B), where A and B are rank 1
arrays.

Originally, the GNU Fortran run time library
contained an implementation of this routine,
but it was determined, after extensive testing,
that expanding the computations comprising
this intrinsic inline always gave better perfor-
mance.

3

4.3 Special treatment of AT .B

The matrix multiplication of the transpose of a
matrix A with matrix B is a frequent operation.
A naive implementation will need a temporary
for AT .

Matrix multiplication for arrays with rank <=
2 is done by the intrinsic MATMUL(A,B). The
transpose of a rank 2 matrix is formed by the
intrinsic TRANSPOSE(A).

The obvious way to evaluate the expression
MATMUL(TRANSPOSE(A),B) indeed is to
evaluate TRANSPOSE(A) in a temporary and
pass that temporary and B as the two arguments
to MATMUL.

However, given that it is necessary to pass array
descriptors to MATMUL anyway, it is sufficient
to pass an alternative descriptor, that describes
A in a way that exchanges its first and second
dimension.

This saves the allocation of a temporary of the
size of A and the subsequent copying of AT into
it.

The reason to special-case this expression is
that it is very common in physical problems,
like quantum mechanics, optics and quantum
chemistry.

4.4 Necessity of temporary storage in ar-
ray assignment

Given the Fortran rules of assignment (the
right-hand-side is always evaluated fully before
the left-hand-side is affected) it is always safe
to evaluate an array expression in freshly allo-
cated temporary storage, and then, on assign-
ment, copy the contents of that storage to the
left-hand-side’s array and deallocate the tem-
porary storage afterwards.

However, very often it is possible to prove that
the allocation, copying and deallocation of the
temporary storage is not necessary, and the as-
signment can directly fill the left-hand-side ar-
ray.

1. If the right hand side doesn’t contain the
array on the left hand side (e.g., A = B∗C).

2. If the use of the left-hand-side array on the
right hand side exactly overlaps (e.g., A =
A+B).

3. If the scalarization loop can be set up so
that overlap between left and right hand
side is handled correctly (e.g., in A(1 :
n−1) = A(2 : n), start the loop at 1).

This analysis is now routinely done in the Front
End.

4.5 Purification and Constification of in-
trinsic procedures

Quoting the GCC documentation, on the dis-
cussion of function attributes:

Many functions have no effect ex-
cept their return value and their return
value depends only on the parameters
and/or global variables. Such a func-
tion can be subject to common subex-
pression elimination (see below) and
loop optimization just as an arith-
metic operator would be. These func-
tions should be declared with the at-
tribute pure.

In fact,

4

Many functions do not examine any
values except their arguments, and
have no effects except the return
value. Basically this is just a slightly
more strict class than the pure at-
tribute above, since such a function
is not allowed to read global mem-
ory. These function should be de-
clared with the attribute const.

The pure attribute applies clearly to most of
Fortran’s simple intrinsic functions, like sin(x),
atan2(x,y) and log(x). When setting this at-
tribute for these functions, further optimization
by the compiler is possible. If the compiler
directly encodes calls to the C math library
routines, then they can get attribute const, as
they only depend on the value(s) of their argu-
ment(s).

It is therefore beneficial to have the Front End
set these attributes for those functions.

[Note that a Fortran program doesn’t have ac-
cess to errno, so the function result is the only
effect.]

5 Optimization Assisted by the For-
tran Front End

5.1 Use of Preinstalled BLAS libraries

BLAS stands for Basic Linear Algebra Subpro-
grams, and is a library of well-known vector
and matrix operations.

The -fexternal-blas compiler option
will force the compiler to generate code to use
the BLAS routines [sdcz]gemm in case of
matrix multiplication by the intrinsic MATMUL.
This is beneficial (for not too small matrices)
if the installed external BLAS library is highly

optimized for the system the program is com-
piled for.

The extent at which -fexternal-blas will
be effective is detemined by the command line
option -fblas-matmul-limit=n with n
being 30 by default.

Fortran reference implementations of the
BLAS routines can be found at http://
netlib.org/blas/index.html.

6 Proposed Future Optimizations

6.1 All Fortran intrinsic procedures are
pure, except RANDOM_NUMBER

Having the Front End set the pure attribute for
them would already result in a number of opti-
mizations. Note that GCC uses a different def-
inition of "pure" than the Fortran (2003) Stan-
dard.

GCC’s pure definition is most easily under-
stood as follows:

Given a Fortran intrinsic function f (x), 2∗ f (x)
can be substituted for f (x)+ f (x).

6.2 Inline MATMUL for small arrays

For small arrays, it is probably advantageous to
expand MATMUL inline. For instance, when the
inner loop has four iterations, it will be fully
expanded by loop unrolling.

Given that it is profitable to inline
DOT_PRODUCT completely, it can be as-
sumed that for rank <= 1 (vector * vector,
or scalar * vector), inlining would always be
right.

5

6.3 MATMUL is called twice in
MAT MUL(a,b)/(1+MAT MUL(a,b))

Just as we do not compute sin(x) twice when
evaluating sin(x)/(1 + sin(x)), neither should
we do so for MAT MUL(a,b).

This is the subject of Problem Report 22572.

The optimization that takes care of this un-
necessary duplication is called Common Subex-
pression Elimination, also known as CSE.

Unfortunately, the Fortran Front End does eval-
uate MAT MUL(a,b) twice, and allocates tem-
porary storage for the results twice.

Even if the pure attribute were set for MATMUL,
still two temporary arrays would be allocated,
instead of one.

Obviously, this analysis should be extended to
all pure Fortran intrinsics.

6.4 Further reduction of temporary alloca-
tion on assignment

Allocation of a temporary to compute the right-
hand-side of an assignment into can be avoided
if the scalarization loops are build such that
overlap between arrays in the left- and right-
hand-side is harmless

1. E.g., in the following assignment: A(2 :
n) = A(1 : n− 1) the temporary can be
avoided by running the scalarization loop
"backwards".

The code to allow this treatment (and others
more general) is already present in the part of
the compiler that translates array expressions -
however, it is not activated and, hence, not de-
bugged.

7 General Reflections on Front End
Optimizations

All of the described optimizations can be clas-
sified as local optimizations. They can be per-
formed without knowledge of the flow of con-
trol, because they all act on a single expression
or assignment.

To get a good overview of classical optimiza-
tions on scalar expressions when using the in-
formation acquired by control and data flow
analysis, one wants to look at [1], Chapters 12,
13 and 14.

Almost all of this theory carries over if one con-
siders arrays to be the basic entity, instead of
scalars, for these optimizations (except for in-
duction variable strength reduction and elimi-
nation, which are typical optimizations on array
indices and addressing).

Obviously, the optimizations described below
have to take place before scalarization.

7.1 Basic Blocks

To quote [1], a Basic Block is:

A sequence of consecutive statements
only entered at the beginning and ex-
ecuted without halt or branch until
the end [of the basic block].

Computing the basic blocks in a routine is
the first step towards deriving the control flow
graph.

Basic blocks can be quite large, if one disre-
gards the underlying loops that will ultimately
comprise the array operations.

6

An example will clarify this - this is the
Newton-Raphson inverse finder for matrices as
discussed in [2], Chapter 2.5, where B0 is a first
guess of the inverse of A:

FUNCTION AINV(A, B0) RESULT (B)
INTEGER I
REAL A(:, :), B0(:, :)
! B has the size of A
! (and therefore of B0)
REAL B(SIZE(A,DIM=1),SIZE(A,DIM=2))
! This converges quite fast
B = B0
DO I = 1, 7

B = 2 * B - &
& MATMUL(B, MATMUL(A, B))

ENDDO
END

There are only three basic blocks in this routine
- the one before the loop (containing the copy
of B0 to B, initializing the result variable with
the first guess), the one after the loop (empty)
and the loop body.

Large basic blocks are beneficial, because it
will make control flow analysis in this part of
the compiler fast.

7.2 Loop Invariant Compututations

Once basic blocks have been determined and
the control flow graph derived, data flow infor-
mation can be computed (see [1], Chapter 13).

When this information is available, Loop In-
variant Computations can be determined.

E.g., the following is a naive implementation
of Jacobi’s method of solving a linear system
A.x = b (see [2], Chapter 19.5), which uses the
fact that a matrix can always be split into L +
D+U , with L the lower triangular, U the upper
triangular and D the diagonal part (DINV is the
inverse of D):

FUNCTION XR(L, DINV, U, B, X0) RESULT (X)
INTEGER I
REAL L(:,:), DINV(:,:), U(:,:)
REAL B(:), X0(:)
REAL X(SIZE(B))
X = X0 ! Suitable first guess...
DO I = 1, 7 ! Seven is probably too low...

X = MATMUL(-MATMUL(DINV,L+U), X) + B
ENDDO
END

After this analysis, the expression
-MATMUL(DINV,L+U) will be recog-
nized as a loop invariant, and moved to be
computed before the loop.

8 Conclusions

We have shown that several optimizations are
available to the Fortran Front End that are im-
possible to perform later, because these opti-
mizations involve the prevention of allocating
temporary storage.

Setting function properties like pure or const on
intrinsic functions is only possible in the Front
End, because it knows the rules of the language.

In one case, the underlying knowledge of the
description of arrays is used to prevent an un-
necessary copy into a temporary.

9 Acknowledgements

As stated, the driving force behind writing the
translation from the parser internal structures
to the middle end’s GENERIC language and
thereby implementing the first Front End op-
timizations was Paul Brook, assisted by Steven
Bosscher.

7

This paper discusses Front End optimiza-
tions developed by the following persons (in
alphabetical order): Steven Bosscher, Paul
Brook, François-Xavier Coudert, Andrew Pin-
ski, Richard Sandiford, Roger Sayle and Paul
Thomas.

Those that helped to improve this paper are:
Paul Brook, Paul Thomas and Steven Bosscher.

The author is also indebted to the rest of the
GNU Fortran Team, for providing Fortran us-
ing professionals with an outstanding compiler
and run time library.

References

[1] A.V. Aho and J.D. Ullman. Principles of
Compiler Design. Addison-Wesley
Publishing Co., 1978.

[2] William H. Press et al. Numerical Recipes
in Fortran (second edition). Cambridge
University Press, 1992.

[3] Serge Lang. Linear Algebra.
Addison-Wesley Publishing Co., 1972.

8

